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When more than one wave is present in a system there exists the possibilty of 
a resonant interaction. Resonant modes become nonlinear at smaller amplitudes 
than nonresonant modes. If the nonlinearity causes increased growth rates then it 
may be that, for a time at least, the behaviour of the resonant modes will be the 
dominant feature. In shear layers resonant triads can be found where two oblique 
modes resonate with a plane wave and this case has received much attention in the 
literature. For a given plane wave, the resonance condition selects oblique modes of 
a certain wave angle and agreement has been found between predicted wave angles 
and those measured in experiments. 

In this paper it is shown that resonance conditions can also be met between two 
planar waves in a Blasius boundary layer, where one of the waves is the usual 
unstable mode, and the other is a higher-order damped mode. The effects of wave 
modulation are modelled by performing a spatial analysis but allowing the frequency 
to become complex. It is found that for certain complex frequencies the strength 
of the nonlinear resonant interaction coefficients is greatly increased. Experiments 
have been performed in a low-turbulence wind tunnel in which disturbances with 
modulated and unmodulated sections were introduced into the boundary layer over a 
flat plate. It was found that disturbances with the frequency and modulation predicted 
by the theory do indeed show a much greater susceptibility to nonlinear breakdown 
than nonresonant disturbances. 

1. Introduction 
This paper is concerned with the growth of small-amplitude disturbances in an 

otherwise laminar zero-pressure-gradient boundary layer. Such disturbances can 
initiate transition to a turbulent state, and so their study is of considerable practical 
importance as well as being of intrinsic interest. 

When a two-dimensional exciter, e.g. a vibrating ribbon, is used to introduce distur- 
bances into a boundary layer, two-dimensional viscous instability waves (Tollmien- 
Schlichting modes) are found to propagate and grow downstream for a certain range 
of excitation frequencies. Flow visualization experiments show that these initially 
planar waves become three-dimensional before undergoing a transition to turbulence. 
A possible mechanism causing the oblique waves to grow is the Craik resonant triad 
in which a plane wave with streamwise wavenumber a and frequency w interacts 
with a pair of oblique modes with ( 4 2 ,  w / 2 ) ,  where the spanwise wavenumber 
/3 is chosen so that all three waves have the same phase velocity in the streamwise 
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direction, see Craik (1971). When the amplitude equations for these waves are calcu- 
lated, Craik found that the first nonlinear terms are quadratic rather than the usual 
cubics found for nonresonant modes. This means that the resonant modes become 
nonlinear ‘sooner’ than nonresonant modes. Resonant triads are not just important 
in boundary layers but have been found in many different wave systems, see Craik 
(1985). 

Raetz (1959) was the first to suggest that 2:l resonances (where, like that studied 
by Craik, at least two waves are found with the same phase speed and the frequency 
and streamwise wavenumber of one are twice those of the other) could occur in 
the Blasius boundary layer for three-dimensional waves. Kelly (1968) showed how 
resonant interaction can serve to increase the transfer of energy from the mean flow 
to the disturbance for an inviscid shear layer. Like Kelly’s resonance, the resonance 
described in the present paper is for a pair of two-dimensional spatial waves but is 
for viscous disturbances in the Blasius boundary layer. The amplitude equations for 
this ‘resonant dyad’ have the same form as those in Kelly and are a special case of 
the resonant triad equations. 

More recently, workers developing rational asymptotic theories for nonlinear dis- 
turbances have derived amplitude equations that do not have the simple polynomial 
structure found above. Instead, the nonlinear terms involve integrals which account 
for upstream history effects and so are nonlocal. These terms, which arise because 
the nonlinear evolution of the disturbance is determined by nonlinear critical layer 
effects, were first calculated by Hickernell (1984). 

Mankbadi, Wu & Lee (1993) have calculated resonant-triad amplitude equations 
for the Blasius boundary layer that take account of the nonlinear critical layer effects 
and have integral terms. This analysis is based on the upper-branch asymptotic 
scaling of the neutral curve where the critical layer is separate from the viscous 
wall layer. Near the neutral curve, on this scaling, the growth rates are very small 
and so this weakly nonlinear analysis might be expected to be valid over a wide 
range of parameters. However, calculations presented in Healey (199%) indicate that 
this upper-branch structure is destroyed abruptly at a well defined, and extremely 
high, Reynolds number R. Below this R the disturbance structure reverts to that 
of the triple-deck theory with the critical layer lying within the viscous wall layer. 
Further calculations presented in Healey (1995b, c) show that the weak growth rates 
associated with the asymptotic upper-branch are also lost, and that for lower R 
the growth rates near the upper branch are of comparable strength to those of the 
lower branch. Thus, it seems that the assumption of an asymptotic upper branch 
disturbance structure used by Mankbadi et al. is not justified at transitional Reynolds 
numbers. 

It should be noted, however, that Healey (1995~)  also found that the value of 
R above which the asymptotic upper-branch structure exists is very sensitive to the 
pressure gradient, and that small adverse pressure gradients can greatly reduce this 
value. Thus, it may be that the resonant-triad amplitude equations for a boundary 
layer in an adverse pressure gradient derived by Goldstein & Lee (1992), who inspired 
the work of Mankbadi ef al., could well be appropriate at experimentally realizable 
Reynolds numbers. 

An alternative rational asymptotic theory for resonant-triad interactions has been 
developed by Smith & Stewart (1987), where weak growth rates are found in the 
downstream limit of the triple-deck theory described in Smith & Burggraff (1986). 
Although the amplitude equations have the same quadratic form as Craik (1971), 
it turns out that the nonlinear coefficients are purely imaginary and equisigned. 
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This leads to conservative coupling and precludes the possibility of the finite time 
singularity that Craik found. However, this triple-deck limit can also be identified 
in the high-R Orr-Sommerfeld (0s) calculations presented in Healey (19954 and 
it happens that this part of the dispersion relationship is only found when R is 
unrealistically large. 

It seems that for the Blasius boundary layer rational asymptotic weakly nonlinear 
theories can only be developed at values of R very substantially greater than those 
accessible to experiment. Hultgren (1987) has developed a composite asymptotic 
theory that captures both upper and lower branches of the neutral curve. This 
dispersion relation shows the same kink in the neutral curve found by Healey (and 
also by Reid 1965) that marks the change in structure on the upper branch and gives 
good quantitative agreement with the 0s theory at high enough R. However, the 
extension to a weakly nonlinear theory still requires formally small growth rates and 
these are only found (for both the composite theory and the 0 s  theory) at extremely 
high R. For this reason, in the present paper a less rigorous approach will be taken 
where finite, but numerically small, growth (and decay) rates will be used as small 
parameters in a weakly nonlinear analysis. While not ‘rational’ it is hoped that some 
insight into the nonlinear dynamics at transitional R might be obtained. 

In $2 evidence is presented for a new resonance where a pair of two-dimensional 
waves is found such that the fequency and wavenumber of one are exactly twice the 
other. This resonance was identified using 0s theory, but can also be studied using 
triple-deck theory. This is not a parametric resonance like the resonant triad since 
in this case it is the fundamental mode which is unstable and the harmonic which is 
damped according to linear theory. A set of quadratic amplitude equations is derived 
for this resonant dyad in $3. Although the growth rates of the two modes are finite 
they will be treated as small parameters in a multiple-scales calculation (they are small 
in the same sense that n-l is small, see page 23 of Lin 1955!). For the case of finite 
growth rates there is no formal justification for truncating the amplitude equations at 
quadratic order. However, in &I it is shown that the quadratic interaction coefficients 
have an unexpected behaviour if the frequency used in the spatial analysis is allowed 
to become complex. Physically, the complex frequency is interpreted as a simple 
model for a modulated wavetrain. For certain complex frequencies the strength of 
the quadratic interaction increases very dramatically. It may be that this feature is 
sufficiently robust that it can cause a strong physical effect even if higher-order terms 
are included. In $5 a bifurcation analysis of these equations is presented showing the 
complexity of the solutions (including homoclinic orbits, period-doubling bifurcations 
and chaos). 

In order to test whether this resonance, and in particular the effects of modulation, 
have any relevance in boundary layer transition, a set of experiments have been carried 
out in the low-turbulence wind tunnel in the Engineering Department at Cambridge 
University. Controlled disturbances were introduced into the boundary layer at some 
upstream location and their evolution measured using hot-wire anemometry. These 
experiments are described in $6. A range of frequencies and modulations were tested, 
but the strongest nonlinear breakdown was found to occur for the case of a frequency 
at the resonant frequency predicted by the theory and for the modulation that the 
theory predicted would be most dangerous. Three-dimensional waves will be present 
in the experiment (the disturbances were introduced via a point source) and have not 
yet been included in the theory. Nonetheless, the proposed selection mechanism for a 
particular resonant two-dimensional frequency does receive strong support from the 
experimental observations. Conclusions are presented in $7. 
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2. Resonance with a higher-order damped mode 
The possibility of a 2:l resonance is of interest since it can cause the disturbance 

to become nonlinear at smaller amplitudes than nonresonant modes. While resonant 
triads have been found in many wave systems, they are not the only way in which 
this kind of resonance can occur. In addition to Kelly's resonance, Proctor & Jones 
(1988) have proposed a thermal convection problem in which two two-dimensional 
modes can be found that satisfy a 2:l resonance. Ffowcs Williams & Guo (1991) have 
considered a 2:l resonance that can occur between the surface modes of a bubble and 
volume pulsation modes. In both cases quadratic amplitude equations were obtained 
with the same form as those of Kelly (1968) and Craik (1971). 

It is thought that such a resonance cannot occur among purely two-dimensional 
waves in a flat-plate boundary layer; hence the concentration of interest in the 
resonant triad. However, in Healey (1994) an investigation was carried out into the 
0s dispersion relationship where both frequency and wavenumber were allowed to 
become complex. The extra parameter introduced into the problem (the imaginary 
part of the frequency) allowed a pair of eigenvalues (o,a) to be found such that 
(2042~1) are also eigenvalues. However, in order to derive amplitude equations, it 
is only necessary that the real parts of the eigenvalues should satisfy the resonance 
condition; the imaginary parts determine the linear growth rates and these should 
be small compared with the real parts. It turns out that although the resonance 
found in this paper exactly satisfies the necessary relationship for the real parts of 
the eigenvalues, the imaginary parts are finite. For this reason, the resonance should 
perhaps be described as approximate. 

Physical quantities will be nondimensionalized using the length, time, velocity and 
pressure scales 6, S/Uo, Uo and pUi respectively where 6 is the displacement thickness 
given by 

6 = 1.7208 (E) 
UO is the free-stream velocity, x is the streamwise coordinate, p is the density and v 
is the kinematic viscosity. The presence of x in (2.1) means that a physical wave with 
fixed frequency will have a nondimensional frequency that increases with downstream 
distance due to the increasing boundary layer thickness. Nonetheless, this choice 
is natural when using the 0s theory since in the parallel flow approximation any 
such streamwise variation is neglected; this choice gives a close analogy with plane 
Poiseuille flow where 0s theory is exact. The Reynolds number is then given by 

V 

Linearized disturbances, u(y)ei(au-wc) , are assumed to satisfy the 0s equation, 

where U(y) is the mean flow (in this case the Blasius profile), primes denote differ- 
entiation with respect to y and u is the vertical component of the two-dimensional 
velocity perturbation that has frequency o and wavenumber a. Equation (2.3) is 
solved subject to the homogeneous boundary conditions u = u' = 0 at y = 0 and 
as y -, co giving an eigenvalue problem. In a spatial calculation a real o and R 
are given and a, which may be complex, must be determined. The spatial problem 
is the relevant one for boundary layers since in practice, a well-defined frequency of 
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disturbance is often imposed on the boundary layer which is then observed to either 
grow or decay downstream. The real part of a then gives the wavelength of the 
disturbance and the imaginary part gives the growth rate. In what follows, the real 
and imaginary parts of a complex quantity will be denoted by the subscripts r and i 
respectively. If ai < 0 then the disturbance grows downstream. 

There is no reason why (2.3) should not be solved when o is also complex. In 
fact, this analytic continuation into the complex plane is essential in solving initial 
value problems, and is a useful computational method for locating branch points and 
finding higher-order modes. A disclaimer is often given that complex frequencies are 
not physical, but in $4 it will be argued that a case can be made for giving a physical 
interpretation to complex frequencies in a localized sense. 

Equation (2.3) has been solved using a compound matrix method based on Davey 
(1982), the actual source code being kindly provided by Professor M. Gaster. Although 
0s theory is exact only when the base flow is parallel, and the Blasius boundary 
layer is nonparallel, its use can be given the following justification. The asymptotic 
theories of Smith (1979) and Bodonyi & Smith (1981) show how nonparallel effects 
can be systematically included in the linear stability theory and how they affect the 
position of the lower and upper branches respectively. Nonparallelism enters the 
expansions for both branches at a relatively high order showing that the Blasius 
flow is well approximated by the parallel flow assumption. The discrepancy between 
the upper-branch asymptotics and the 0 s  neutral curve at transitional R is not an 
indication of nonparallelism (as suggested in Bodonyi & Smith) but, as shown by 
Healey (1995a), can be related to a branch point in the dispersion relation lying at 
high R near the upper branch. Recent, and very careful, experiments by Klingmann 
et al. (1993) confirm that the 0s neutral curve compares well with experiment even 
at the lowest R;  see also the numerical calculations by Bertolotti, Herbert & Spalart 
(1992). 

The solid curve in figure 1 represents a continuation of the neutral curve into the 
complex frequency plane at a fixed Reynolds number. The two intersections of this 
curve with the dotted line oi = 0 give the lower and upper branches of the neutral 
stability curve. At large enough positive mi, all the modes are spatially damped: this 
is key to the initial value problem. Likewise, at large enough negative mi, all the 
waves are spatially growing; however, it would be dangerous to describe these modes 
as being more unstable than the mi = 0 modes since they are simultaneously suffering 
a strong temporal decay. The circles correspond to the resonance found in Healey 
(1994). The dashed lines show that, by relaxing the 2 : 1 condition on the imaginary 
parts, it is possible to follow the resonance onto the real frequency axis. At first sight 
this appears to contradict the assertion made earlier that resonance cannot be found 
for two-dimensional waves. In fact the harmonic mode has passed, relative to the 
fundamental, around the branch point marked by the cross in figure 1. Thus for real 
frequencies the resonance is between the unstable mode and one of the higher-order 
damped modes, i.e. a disconnected branch. 

Figure 2 shows the dispersion relationships for these two modes and the resonant 
frequencies. Straight lines passing through the origin correspond to constant phase 
speeds. It is clear from the figure that if only the unstable mode is considered then 
any such line will pass through a:') at most only once (unless the frequency is very 
small but then the waves would all be damped). Thus with only the unstable mode 
present no resonance can be found unless oblique modes are also considered. When 
the second mode is included, there is a range of frequencies for which pairs of waves 
can be found that both travel at the same phase speed, i.e. straight lines that pass 
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FIGURE 1. Extension of a spatial analysis for complex frequencies at R = 2000. The solid Line is 
where ai = 0, below this line ai < 0 and the modes grow in the downstream direction. The circles 
correspond to a pair of eigenvalues (w ,  a )  for which (2w,2a) are also eigenvalues. The dashed lines 
show the locus of points which satisfy the real part resonance such that (w,  a,)  and (20,201,) are all 
eigenvalues. The cross marks a branch point where two modes meet. 

-0.06 

through the origin and intersect both a!]) and a;2). However, there is only one such 
pair where one wave has exactly twice the frequency as the other, and this pair is 
marked by '+' symbols in the figure. At R = 2000 the resonance occurs at o = 0.0817 
and the wavenumbers are dl) = 0.256-0.0101i and o = 0.1634, d2) = 0.512+0.225i. 
Incidently, the reason that the damped mode ends abruptly is that as o decreases, 
its phase velocity increases and approaches unity near o = 0.034, hence this mode is 
approaching the continuous spectrum. 

This behaviour is not particular to this Reynolds number. Figure 3 shows how 
well much of the complex frequency data collapse when the lower-branch Reynolds 
number scaling is used. As expected, there is good collapse of the neutral curves 
near the lower branch (i.e. the low-frequency intersection of the neutral curves with 
the real frequency axis) for all the Reynolds numbers considered. There is even a 
reasonable data collapse for the upper branch (i.e. the high-frequency intersection of 
the neutral curves with the real frequency axis) for 2000 < R < 10000, but between 
R = 5 x lo4 and R = 2 x lo5 there is a relatively large movement in the position 
of the upper branch. This corresponds to the kink in the neutral curve found near 
R = lo5 in Healey (19954. For R > lo5 the upper-branch neutral curves clearly do 
not scale as R-'''. The neutral curve passes through the branch point for a Reynolds 
number between 6000 and 7000 and the discontinuous movement in the neutral curve 
at large negative wi between these values of R is a consequence of branch-switching. 
At R = 7000 the neutral curve bends sharply as it passes over the top of the branch 
point, and it is the remnants of this sharp bend that causes the kink in the neutral 
curve at higher R for real frequencies. 

The dashed curves show the resonant modes, and all of these collapse well over 
the range 2000 < R < lo6 suggesting that they have a triple-deck structure. In fact, 
analysis of the leading-order triple-deck dispersion relationship, e.g. setting E = 0 in 
equation (4) of Hultgren (1987), shows that the resonance occurs at w = 2.85R-'/2, 
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FIGURE 2. Dispersion relationships for the modes that can resonate at R = 2000 for real frequencies. 
The solid lines are the real parts of the wavenumbers and the dashed lines are the imaginary parts. 
The superscript (1) corresponds to the usual unstable mode and (2) corresponds to the higher-order 
damped mode. The 'plus' symbols show the resonant modes. 

a(l)  = (1.14-0.149i)R-1/4 and a(2) = (2.28+0.865i)R-1/4 as R + 00. The branch point 
that separates the resonant modes is the same branch point that causes the kink in 
the neutral curve. Incidently, Hultgren mentions in his paper that there is a 'distinct 
possiblity' that parametric resonance may exist for a higher-order mode. 

3. Nonlinear amplitude equations 
The resonance identified in the previous section is between the unstable mode and 

a higher-order damped mode. Both modes are found on the triple-deck dispersion 
relation and have O( 1) growth rates compared with the real parts of the wavenumbers. 
At R = 2000 the growth and decay rates, lcxil/ar, of the two modes are 0.039 and 
0.44, and as R + 00 these rates become 0.13 and 0.38. In this section, it will be 
assumed these growth rates can be considered to be small compared with one. The 
resulting truncated amplitude equations are not rigorously justified, but there are 
examples in boundary layer stability when asymptotic theories give reasonable results 
even when the small parameter is not so small. A simple example is the leading-order 
triple-deck estimate for the resonant frequency given at the end of $2. This result 
was obtained by assuming that terms O(r)  could be ignored in Hultgren's expression, 
where E = (co/R)'16. When R = 2000, E = 0.19 at resonance, and the difference 
between this resonant frequency and the 0s resonance is 20%. If the O(r) ,  0 ( e 2 )  and 
O(e3lne) terms are included, then the triple-deck resonant frequency is only 2.6% 
away from the 0 s  value despite the fact that the neglected terms are only 1 lnrl = 1.6 
times smaller than the retained terms. 

A further possible justification for using weakly nonlinear theory for this case is 
that the ratio y of the unstable growth rate to the damping rate of the higher-order 
mode is relatively small. At R = 2000, y = 0.045, and near R = 810, y = 0. Hughes & 
Proctor (1990; 1992) have studied resonant interactions in the limit y + 0. They found 
that the dynamics become independent of y. In other words, it does not matter how 
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FIGURE 3. Same as figure 1 but with the results for eight different Reynolds number superim- 
posed and scaled by R-'/*. The lines marked by 1,2, ..., 8 have R = 2 x lo3, 6 x 103,7 x lo3, 
lo4, 5 x lo4, 105,2 x lo5 and lo6 respectively. All of the dashed lines for the harmonics pass to the 
right of their respective branch points. The neutral curves 1 and 2 pass under the branch point, the 
rest pass over it. 

strongly damped the damped mode is (though it must still be small compared with 
one) or how weakly amplified the unstable mode is provided that one is much smaller 
than the other. This situation is somewhat analogous to that of the centre-manifold 
in dynamical systems theory : the dynamics on the centre-manifold are independent 
of how strong the contraction onto the centre-manifold is. In the present case it is the 
damped mode that most compromises the assumption of weakly nonlinear behaviour 
and so terms involving this mode will be least accurate. However, since y is small, this 
might not be a serious shortcoming. Of course, ultimately the use of weakly nonlinear 
theory can only be justified if it turns out to have some relevance to experiments on 
boundary layer transition. 

The amplitude equations have been derived using a multiple scales approach like 
that in Proctor & Jones (1988) .  A small spatial detuning from the exact resonance will 
be included in the analysis. The small parameter in the expansion, e, is given by the 
growth rate of the unstable mode. The resonant wavenumbers for a real frequency w 
are then written as 

a,. - ie, = 

a(2) = 2a, + A 6  + k / y ,  

where A is the detuning parameter ( A  = 0 implies exact resonance) and y is the ratio 
of the growth rates. As noted above, e = y = 0 at R NN 810, €/a ,  + 0.131 and 
y -P 0.172 as R + 00, and e/(2ary) = 0.4 for all R. The oscillations occur on the fast 
scale x and the amplitude of the waves varies on a slow scale X = ex. Hence the 
resonant modes have the form 

A I ( X ) E  + C.C. and A2(X)E2 + C.C. (3.3) 
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7 (3.4) 

where 
E = e i (w-wO 

and C.C. denotes the complex conjugate of the preceding terms. The velocities and 
pressures are expanded as a power series in c: 

u = u + e(A1u1E + A2u2E2) + € 2 ( U * 1 E  + U 2 2 E 2 )  + C.C., 
u = €(AIUIE + A2v2E2) + 2 ( u 2 1 E  + u&) + C.C., 

p = c(A1p1E + A2p2E2) + c2(p21E + p 2 2 E 2 )  + C.C., 

(3.5) 
(3.6) 
(3.7) 

where U = U ( y )  is the Blasius profile and the subscripted u, v and p terms are 
functions of y only. The first- and second-order spatial derivatives are written in the 
usual way as 

a a a 2  a2 
ax  ax a x 2  axax -++- and - +2e-  (3.8) 

respectively and (3.5)-(3.8) are substituted into the Navier-Stokes equations for two- 
dimensional incompressible flow. The resonance generates inhomogeneous terms at 
O(e2)  and application of the appropriate solvability conditions leads to the following 
amplitude equations: 

(3.9) 
(3.10) 

The details of this derivation and the definitions of the complex nonlinear interaction 
coefficients a and b are given in Appendix A. 

4. Wave modulation 
It has been observed in experiments, see Gaster (1979), that modulated waves 

can be more susceptible to a nonlinear beakdown than unmodulated wavetrains. 
Gaster reported that a wave packet can show nonlinear behaviour at an amplitude 
‘some four or five times smaller’ than a pure monochromatic wavetrain. More recent 
experiments by Shaikh & Gaster (1994) have been performed in which randomly 
modulated wavetrains were introduced into the boundary layer. Again it was found 
that modulation plays an important role in the enhancement of nonlinear behaviour. 
Although the input disturbance had a flat spectral content, like an impulse, the 
nonlinear breakdown was highly localized and completely reproducible. This suggests 
that particular sorts of modulation are somehow more dangerous than others. 

Stewartson & Stuart (1971) have developed a weakly nonlinear theory for wave 
packets in plane Poiseuille flow and Hocking (1975) has extended this analysis to 
the case of the asymptotic suction profile. In both cases the amplitude is taken to 
be a slowly varying function of both x and r (and also z) rather than just x as in 
the previous section. The amplitude then satisfies a partial differential equation. In 
this section a simpler approach will be adopted that leaves the structure of (3.9) and 
(3.10) intact. 

In the conventional spatial analysis the frequency is taken to be real and this 
models a disturbance whose amplitude is constant in time at a particular position in 
the boundary layer. If the frequency is taken to be complex with positive imaginary 
part then this models a disturbance whose amplitude is growing exponentially in 
time at a particular point in the boundary layer. A disturbance with exponentially 
increasing amplitude can be introduced to the boundary layer in an experiment, but 
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only for a finite period of time because eventually the amplitude becomes too large for 
the linear theory to be appropriate. Although the amplitude of a complex frequency 
becomes arbitrarily large as t + +a (depending on the sign of the imaginary part), 
the notion of a complex frequency that exists for a finite time (or even a semi-infinite 
time) that is long compared to the period of the oscillation may be useful. In fact, this 
method of modelling modulation could be used whenever the operator a / &  = -io, 
e.g. in numerical solutions of the linearized spatial Navier-Stokes equations or in 
solving the parabolized stability equations developed by Herbert, see Bertolotti et al. 
(1992). 

The decomposition of a signal into frequencies which are localized in time is 
precisely what is done when using a wavelet transform. Farge (1992) has recently 
reviewed the use of the wavelet transform in fluid mechanics. A time series f ( t )  can 
be decomposed into a set of wavelet coefficients W(t0,s) where s is a parameter that 
characterizes a scale or frequency in the signal and to is a point in the time series. 
The magnitude of a wavelet coefficient gives a measure of the energy in the signal 
at a particular point in the time series of a particular frequency. A wavelet g( t ;s )  is 
chosen which, for a fixed value of s, gives a shape that has a simple structure and is 
localized with a finite amplitude over a period of order 1/s. A commonly used choice 
for the wavelet transform is the Morlet wavelet, see equation (23) of Farge (1992), 
which is given by 

(4.1) g ( t ;  s) = e-(st)2/2-imsr 

This wavelet is an oscillation with a Gaussian modulation and so resembles a wave 
packet. The parameter rn determines the number of oscillations present in the wavelet; 
in what follows rn = 5. For a fixed s the wavelet is translated by to and then projected 
onto the signal, f(t):  

cc 

W(t0,s) = ~ ' /~J_m(( t )g( t  - t0;s)dt (4.2) 

where the factor s1/2 is used to normalize the energies in each scale. The expression 
(4.2) is evaluated most efficiently by taking the Fourier transforms o f f  and g and 
performing a convolution in the frequency domain, i.e. let 

f(o) = [I f(t)e-'"'dt, (4.3) 

g"(w;s) = g(t;s)e-iutdt, (4.4) 

h"(0;s) = f (w)g(w;s)  (4.5) 

[I 
then let 

and hence 

As an example, consider the function 

CI sinortew" for t < t l  

c3 sinwrte-oJ for t > t 2  

for tl < t < t 2  (4.7) 

where oi > 0 and the constants cl, c2 and c3 are chosen to ensure that f is continuous. 
This function is shown in figure 4(a) and can be thought of has being the real part 
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FIGURE 4. (a) A plot of f(t) defined by (4.1) using w, = 0.15 and wi = 0.015. ( b )  A contour plot of 
the magnitude of the wavelet coefficients calculated using (4.7) and w, = 5s which is the frequency 
of the oscillation within the wavelet (m = 5). Discrete fast Fourier transforms were used and f(r)  
was sampled at period T = 1 giving a Nyquist frequency of 0.5. 

of a signal consisting of two complex frequencies with oppositely signed imaginary 
parts with a section of real frequency in the middle. For times such that w,lt - t l l+ 1 
and writ - tzlal, each section of this composite signal will evolve independently 
as the disturbance propagates downstream. Dispersion will occur for t = tl and 
t rn r2. In this sense, parts of a modulated time series can behave locally like complex 
frequencies. Of course, f(t) can be equally well described by a sum of Fourier modes, 
and for linear disturbances there can be no advantage in using the idea of complex 
frequencies, but for the nonlinear analysis it may be simpler, and physically more 
intuitive, to represent a modulated disturbance by a small number of local complex 
frequencies. 

The wavelet transform of (4.7) is shown in figure 4(b). The frequency of the central 
unmodulated section is picked out very clearly and the amplitude of this frequency is 
seen to increase and decrease on either side. There is leakage into other frequencies 
owing to the compact nature of the wavelets, but there is extra leakage near tl and 
t2 where there are discontinuities in the first derivative of the envelope function. This 
wavelet transform plane can also be used to estimate the values of wi corresponding 
to each frequency at any given instant in time. At a particular value of s, and hence 
a,, wi can be estimated from the rate of change of amplitude of that frequency at 
that moment in time: 

where t is the sample time. Therefore, at any moment in time, it is possible to 
decompose the signal in a way that shows how the energy is distributed throughout 
the complex frequency plane. Figure 5 shows the energy in the complex frequency 
plane at four different times. In (a ) ,  which corresponds to a growing part of the time 
series, the energy of the signal is concentrated near o NN 0.15 + 0.015i. In (b) the 
signal is stronger than in ( a )  and is concentrated on the real axis at w = 0.15. Part (c) 



242 J. J. Healey 

1.0 . 1.0, 

0.5 4 A 0.5 4 

0 0 
0.5 0.5 

. I  

FIGURE 5. Energy distribution over the complex frequency plane at times t = 260, 500, 700 and 
764, (a),  (b), (c) and (d) respectively. In each plot the vertical axis is I W1. 

corresponds to close to the point where f ( t )  switches from having constant amplitude 
to a decaying amplitude, and here more frequencies are excited and are spread across 
the wi < 0 half-plane. Part (d) is taken from the decaying section of the time series 
and here the energy is concentrated near w w 0.15 - 0.015i. 

The amplitude equations derived in $3 for real frequencies can be derived in exactly 
the same way for complex frequencies. The difference is that now, instead of (3.3) 
and (3.4), the resonant modes are 

Al(X)Ee"" + C.C. and A2(X)E2e2Wi' + c.c (4.9) 

as before. The resulting amplitude equations are now 
(4.10) 

(4.1 1) 
(4.12) 

Equations (4.1 1) and (4.12) are to be solved at a constant time t (since this is a spatial 
calculation). The additional term in t is a consequence of the fact that the strength 
of the nonlinear interaction must now be a function of time since the amplitudes are 
now functions of time. Equations (4.11) and (4.12) can be transformed to (3.9) and 
(3.10) through the rescaling A1 H e-Wi'A1 and A2 

It might seem that allowing complex o can only have a small effect on the nonlinear 
coefficients. However, this need not be the case. Figure 1 shows that for wi < 0 the 
dashed line corresponding to the higher-frequency resonant mode passes close to the 
branch point. Near the branch point the eigenfunctions undergo rapid changes in 

e-2'0i'A2. 
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FIGURE 6. Variation of the nonlinear coefficients with the imaginary part of the resonant complex 
frequency. (a-c), are for R = 1550, (d-j)  are for R = 1350. 

structure, and, since a and b depend on the eigenfunctions via (A 15) and (A 16), 
these coefficients can also change rapidly. Before continuing, it should be noted that 
if Qj = arg(-ab) then the case @ = 0 corresponds to conservative coupling, i.e. the 
modes can exchange energy between themselves but the nonlinear terms do not effect 
the transfer of energy from the mean flow (see $5 for a fuller discussion). It will be 
seen below that in general Qj # 0. 

Figure 6 shows how la\, Ibl and @ vary with oi at two different Reynolds numbers. 
At R = 1550 the coefficients vary smoothly except near oi x -0.01 where all 
three graphs show a relatively small 'blip'. At this Reynolds number the effect of 
modulation is not likely to have any significant effect on the behaviour of disturbances 
in a boundary layer. However, at R = 1350 all three graphs show a strong spike near 
mi k: -0.011, in particular Ibl increases by a factor of 5 within this narrow region. 
The spikes occur when the resonant modes are close to the branch point and no such 
behaviour has been found for mi > 0. In both cases @ # 0 and so the increase in 
the magnitude of the nonlinear coefficient can correspond to increasing the nonlinear 
transfer of energy from the mean flow to the disturbance. 

There is clearly a sensitive dependence of the spikes on Reynolds number, and 
figure 7 shows how the magnitude of Ibl vanes across the (R,oi)-plane: Ibl varies 
smoothly over most of the plane (as would have been anticipated) except along a 
locus of points, which correspond to eigenvalues near the branch point, where very 
sharp variations occur. Figure 2 shows that the resonant modes pass close to the 
branch point at very large R and so this spiky behaviour can be expected to occur at 
asymptotically large Reynolds numbers too. The spikes in figures 6 and 7 occur when 
JcoiJ/o, = 0.1, so the rate of modulation required is similar to that in figure 4(a). 
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FIGURE 7. Variation of Ibl with the imaginary part of the resonant complex frequency and 
Reynolds number. 

If the weakly nonlinear analysis carried out in 83 were extended to higher order 
then the cubic-, quartic- and higher-order nonlinear terms would have coefficients 
that have a similar form to (A 15) and (A 16) and would also involve multiples of the 
eigenfunctions u1 and u2. Thus for resonant modes near the branch point, the higher- 
order coefficients are likely also to show the same spiky behaviour as the quadratic 
coefficients. This suggests that even if the truncation at quadratic order is hard to 
justify, the higher-order nonlinear terms may be showing the same behaviour anyway, 
and that therefore (3.9) and (3.10) do capture important features of the disturbance 
dynamics in a boundary layer. 

5. Analysis of the amplitude equations 

changes of coordinates. First, let 
In order to understand the behaviour of (3.9) and (3.10) it helps to make several 

then 

(5.1) 
(5.2) 

(5.3) 
(5.4) 

where @ = arg(-ab) as before. The same equations are obtained if (4.11) and (4.12) 
are used instead; the only difference is that the a in (5.1) and (5.2) is replaced by 
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ae2wJ. The rate of change of energy of the two modes is given by 

a 
- (lBi12+ ( & I 2 )  /2 = (B1I2 - y-I(B2I2 + Re {B;B;(l -eig)} ax ( 5 . 5 )  

where Re(.} denotes the real part. Clearly @ = 0 means that the nonlinear terms are 
conservative and for a given B1 and B2 the strongest nonlinear energy transfer occurs 
when @ = +n. Whether the nonlinear terms are stabilizing or destabilizing depends 
on the sign of the last term in ( 5 . 5 )  and this can be positive or negative depending 
on the relative phase of B I  and B2. This phase dependence is an important feature of 
resonant amplitude equations and is not found for nonresonant modes. This property 
is brought out further by transforming into polar coordinates : let 

B1 = rlei81, 
B2 = r2e , i8.7 

where rl and r2 are real and positive and 81 and 82 are real, then the amplitude 
equations may be written 

= A - - r i sin(@ - x )  - 2r2 sin x ,  (5.10) 
1 2  

where x = 82 - 201. Thus the relative phase, x,  between the modes evolves and there is 
the possibilty that some choices of initial conditions may lead to divergent solutions 
whereas others, that are identical except for relative phase, may lead to bounded 
solutions. This property will be tested for in the experiment, see $6. 

In order to analyse these equations further, it is convenient to use the following 
transformation (see Hughes & Proctor 1992) that removes the trigonometric functions 
of the independent variables and leads to equations in three real variables: 

(5.11) 
(5.12) 
(5.13) 

x and y together characterize the amplitude and relative phase of the 12  mode and z 
characterizes the amplitude of the rl mode. The amplitude equations finally become 

k = -x - 6 y  + 2y2 - z cos @, 
y = 6 x  - y - 2xy - z sin @, 

i = 2yz + 2xz, 

(5.14) 
(5.15) 
(5.16) 

where the dots denote derivatives with respect to yX and 6 = y A .  These equations 
are the same as equations (1.6) of Hughes & Proctor (1992) but with a time reversal 
and their y is the reciprocal of our y. There are three parameters: y ,  @ and 6. The 
first two are functions of R and mi and the third can be chosen arbitrarily (it is the 
amount of detuning). Equations (5.14H5.16) are invariant under the transformation 

Y H -Y, 
@I+ -@, 
6 I+ -6, 

so, without loss of generality, we shall restrict ourselves to 6 < 0. 

(5.17) 
(5.18) 
(5.19) 



246 J .  J .  Healey 

nontrivial fixed points located at 
The fixed points of (5.14)-(5.16) are found by setting k = j = i = 0 and there are 

x = -y, (5.20) 

(6 - [l  + 2y] cot q2 - - 8y } ' I 2 ,  (5.21) 
sin2 @ 

6-(1-2y)cot@ 
4 Y =  

(5.22) 

provided that 

(6 - [l  + 2y] cot q2 2 - 8Y (5.23) 
sin2 @' 

These fixed points diverge to infinity as @ + 0 (there can be no equilibria when 
@ = 0), and are created by a saddle-node bifurcation at 

2( 2y)'/2 
6 = (1 +2y)cot@+ - 

sin @ 
(5.24) 

which is obtained by using (5.23) at equality. In addition, it is necessary that z > 0 
from (5.13). Substituting (5.24) into (5.20) and (5.21) gives 

z = - 2Y (-cos@+ - 
sin2 @ 

and since 

1 + 2 y  2 1  
2( 2y)'l2 

(5.25) 

(5.26) 

(with equality when y = 1/2) it follows that the saddle-node with z 2 0 for all @ and 
y is given by 

2( 2y)'l2 
6=(1+2y)cot@--. 

sin @ 
(5.27) 

Physically, a fixed point corresponds to a pair of waves that each has a constant 
finite amplitude and constant relative phase. The stability of the fixed points is 
determined by finding the eigenvalues of the Jacobian, J ,  of (5.14)-(5.16) evaluated 
at the fixed points: 

(5.28) 

(5.29) 

4y-6 -cos@ 
J =  6-2y -1-2x -sin@ ( 1,' 0 2(Y + x) 

The eigenvalues, A, of J satisfy the cubic 

0 = A3 + 12A2 + 111 + lo 

where 

(5.30) 
(5.31) 
(5.32) 

The fixed points will undergo a Hopf bifurcation if 10 = 1112 and I I  > 0. The existence 
of a periodic orbit would correspond to a pair of waves with periodically modulated 
amplitudes and whose relative phase oscillates about some mean value, and hence 
they travel with oscillating phase speeds. 
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In Healey et al. (1991) three coupled nonlinear ordinary differential equations were 
studied that also had steady bifurcations (in that case a pitchfork rather than a 
saddle-node due to a reflection symmetry) and Hopf bifurcations. It turned out to 
be particularly fruitful to examine the case when, for certain parameter values, the 
steady and unsteady bifurcations occur almost simlutaneously. Close to this multiple 
bifurcation point, called a Takens-Bogdanov point, it is possible to obtain exact 
solutions by reducing the system to a pair of ordinary differential equations on the 
centre-manifold, see Guckenheimer & Holmes (1986). Of special interest is a locus of 
planar homoclinic orbits (an orbit of infinite period that approaches a saddle fixed 
point as t + +a) that originate at the Takens-Bogdanov point. It was found that far 
enough away, where the centre-manifold reduction no longer applies, the eigenvalues 
of the saddle point to which the orbit is homoclinic become complex, giving a three- 
dimensional homoclinic orbit. For certain ratios of the eigenvalues Glendinning & 
Sparrow (1984) have shown that complicated bifurcation sequences including period- 
doubling cascades to chaos can be found near homoclinicity. Parts of these sequences 
were observed in Healey (1991), both in the model and in experiments. 

The scenario outlined above could potentially arise whenever a Takens-Bogdanov 
point is found in a system with a phase space that is at least three-dimensional. At 
a Takens-Bogdanov point, there are two zero eigenvalues and this corresponds to 
10 = lI = 0. Applying this condition to (5.30H5.31) leads to 

cos(9= ( y { l -  ( l + - ) l i 2 }  1 - 2 y  

2Y 
(5.33) 

with 6 then given by (5.27). Equation (5.33) only has real solutions when for y > 1/8, 
otherwise the right-hand side has magnitude greater than one. The behaviour of 
(5.27) and (5.33) can be understood by considering a couple of limiting cases. First, 
let y = ( 1  + e)/8 where €-el. Then it follows that 

In the limit p l ,  

1 /2  

6 = -3 4 €  (2) + 0 ( € ' / 2 ) .  

(5.34) 

(5.35) 

(5.36) 

(5.37) 

(9 has a single minimum at y = (1  + $)/2 for which (9 = 1.3475 and 6 k: -2.5425. 6 
has a single maximum at y = 1/2 for which (9 = n / 2  and 6 = -2. 

A combination of numerical integrations of (5.14H5.16) and the analytic results 
obtained above have been used to elucidate the possible behaviour that can be 
exhibited by the resonant mode amplitude equations. The results of this study are 
included in Appendix B for completeness. Figures 19 and 20 give some indication of 
the complexity of the nonlinear dynamics that can be found in the resonant amplitude 
equations near the Takens-Bogdanov point. 

However, in a boundary layer experiment there is no guarantee that all of this be- 
haviour can be observed (even if a regime corresponding to suitable model parameters 
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FIGURE 8. Basin of attraction for the stable fixed point at y = 0.05, @ = 2.6 and 6 = -4. Black 
points correspond to sets of initial conditions that converge onto the fixed point, and white points 
are initial conditions that ultimately diverge to infinity. (a) r2 = 0.1, (b )  r2 = 0.5, (c) r2 = 1.0 and 
( d )  r2 = 1.5. 

can be found), because of the slow boundary layer growth. A disturbance propagating 
downstream may satisfy the resonance conditions at a particular downstream location 
but will then be detuned away from this position. This might be modelled heuristically 
by allowing 6 to be a slowly varying function during the integration of (5.14)+5.16), 
Therefore many of the finer details described above may only exist transiently in an 
experiment (although they may be present in exactly parallel flows like the asymptotic 
suction profile or plane Poiseuille flow if this resonance occurs there too). Perhaps 
the most robust feature of (5.14)-(5.16) is that there can be bounded or unbounded 
solutions depending on the amount of detuning. In the unbounded case, a singularity 
occurs after finite time. The assumptions of weak growth necessary in the derivation 
of the amplitude equations must break down before this happens, but the enhanced 
destabilization of the solution by the leading-order nonlinear terms may be significant 
in promoting transition. 

Even when a stable fixed point exists, the solution may not converge onto it unless 
suitable initial conditions are chosen. Figure 8 shows the basin of attraction of the 
stable fixed point at y = 0.05 and @ = 2.6, which are the values at R = 2000 for 
unmodulated waves, and 6 = -4. Figure 8(a) shows the basin of attraction for initial 
conditions with r2 = 0.1, 0 < x < 271 and 0 < r: < 6. For ri = 1, say, then for all 
initial phases between the two modes, the solution converges onto the fixed point, 
while for r: = 3 all initial phases diverge. When ri k: 1.5 the solution converges 
or diverges depending on the initial relative phase of the two modes. The phase 
dependence is relatively weak for r2 = 0.1, but becomes much more pronounced as r2 

increases. In (d), where r2 = 1.5, the amplitude of r: needed to cause divergence varies 
by a factor of order 20 with the initial phase relationship. This phase dependence will 
be tested for in the experiment. 
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6. Experimental investigation 
Experiments have been carried out in the low-turbulence wind tunnel in the 

Engineering Department at Cambridge University. The experimental arrangement is 
essentially the same as that described in Healey (1993). A flat plate was mounted at 
zero incidence to an oncoming flow of air and a two-flap arrangement was used at 
the downstream end of the plate to obtain a zero pressure gradient over the working 
part of the plate. The turbulence level in the free stream (in the range 4-4OOOHz) was 
of order 0.01% of the mean velocity of 18 m s-l. A small loudspeaker is embedded 
200 mm from the leading edge and communicates with the boundary layer via a small 
hole giving a point source for the disturbances. The loudspeaker can be driven by 
computer-generated signals via a digital to analogue (D/A) converter, and a hot-wire 
positioned downstream of the hole is sampled at a frequency that is phase-locked 
with the D/A. The same disturbance was introduced up to 200 times and the hot 
wire data averaged to reduce the effect of incoherent background disturbances. 

When an unmodulated sinusoidal disturbance is introduced into the boundary layer 
it has a strong tendency to become modulated as it evolves downstream. It seems 
that very small amounts of irregular background noise can grow in the presence of 
a sinusoidal excitation and strongly modulate the signal. Figure 1 of Healey (1993) 
shows an example of this phenomenon, and for a more detailed discussion see Gaster 
(1990) where these ideas were first developed. Therefore, it is sensible to consider 
modulated waves from the outset, since completely unmodulated waves cannot be 
realized in an experiment, and especially since natural transition is dominated by 
irregular disturbances. Signals of the form shown in figure 4(a)  were used so that the 
relative importance of sections with growing, constant and decaying amplitude could 
be studied simultaneously. 

Figure 9 shows the effect of increasing the strength of the modulation at a particular 
frequency. When the damping rates are small, as in (a) ,  the modulation has little 
effect, but as they increase, ( b )  and ( c )  start to show some increased growth near the 
onset of the damping part of the signal and in ( d )  a strong spike has appeared during 
the damping section. The amplitude of the response for the unmodulated section 
is several percent of the local mean flow speed, but the spike is about a quarter of 
the local mean flow. The results in $4 indicated that the strength of the nonlinear 
coefficients will be greatly enhanced if -oi/o, - 0.1, and the experimental results in 
figure 9 confirm that with sufficiently strong temporal damping in the input, there is 
a dramatic nonlinear breakdown. 

Furthermore, the analysis in $5 indicates that the solution may either converge to 
a bounded solution or diverge to infinity depending on the initial phase relationship 
between the two resonant modes. The excitation frequency used in figure 9 is close to 
the unstable lower resonant frequency shown in figure 2 at almost the same R. The 
stable higher resonant frequency will be excited to some extent by the discontinuities 
in the first derivative of the envelope function at points where the signal switches 
from an unmodulated section to a modulated section. The relative phase between 
the two modes can be adjusted by changing the phase of the oscillating part relative 
to the modulating envelope. 

Figure 10 shows two driving signals identical in every respect, except that the phase 
between the envelope and the oscillating part of one has been shifted by K relative to 
the other. It can be seen that this simple phase shift completely changes the nonlinear 
behaviour of the disturbance, and suppresses the breakdown. It is possible that the 
large spike observed in figure 10(a) corresponds to the finite time singularity that can 
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FIGURE 9. The left-hand column is a set of driving signals that have been sent to the loudspeaker, 
the right-hand column are the (averaged) hot-wire measurements corresponding to these inputs. 
The hot wire was one displacement thickness from the wall and directly downstream from the 
loudspeaker hole at a position where R = 1980. The signal has frequency w, = 0.0805 in each case, 
and the following damping rates were used: (a)  wi = 0.037, ( b )  wi = 0.065, (c)  wi = 0.102 and 
( d )  wi = 0.153. 

occur in the amplitude equations and that the absence of the spike in figure 10(b), 
where the phase relationship has been changed, corresponds to the equilibrated 
solutions of the amplitude equations that can exist at the same parameter values and 
that can be reached with the appropriate initial phase relationship. Although it is 
difficult to make precise quantitative comparisons between the amplitude equations 
and the experiment, there appears to be a strong qualitative correspondence. 

Figure 11 is analgous to figure 8; it shows how the strength of the breakdown 
observed in the experiment varies with the relative initial phase of the two modes 
and the amplitude of the signal. There is the same qualitative behaviour as seen in 
figure 8. For a small enough initial amplitude the response is small and for large 
enough initial amplitudes there are spikes in the hot-wire signals. However, for a 
range of intermediate amplitudes there is a strong dependence on the initial phase 
between the two modes and figure 10 shows a relatively extreme example. 

The structure of the spike has also been studied in the y-direction. Figure 12 shows 
a series of hot-wire records taken from different heights in the boundary layer. The 
small irregular oscillations during the flat part of the input disturbance are highly 
reproducible through the boundary layer. Near the wall the spike has a stronger 
upward part, while higher up it has a stronger downward part. The spike is tilted 
forwards slightly: the spike observed near the edge of the boundary layer is detected 
at an earlier time than the spike observed near the wall. This inclination of the spike 



Resonant boundary layer wave modulation: theory and experiment 25 1 

I 
0.20 0.25 0.30 0.35 

U 
(m s-1) 8 

4 L 
0.20 0.25 0.30 0.35 

Time (s) 

FIGURE 10. Strongly modulated waves near the resonant frequency with the same amplitude for the 
driving signal as in figure 9. The input signal in (b)  is -1 times the input signal in (a).  In both 
cases, mi = 0.21. 

through the boundary layer results in the instantaneous profiles becoming strongly 
inflectional as the spike passes by, see figure 13. An inflectional shear layer has formed 
in (c) and this moves downwards in ( d )  and (e) .  Inflectional profiles are inviscidly 
unstable and have much stronger growth rates than the Blasius profile. At later times, 
after the spike has passed by, the profiles become fuller than the Blasius profile and 
these may be less unstable than Blasius profiles (or even stable). 

The disturbances have a more complicated structure in the spanwise direction. The 
disturbances are introduced via a point source and so oblique waves will also be 
present. Resonant triad-interactions are likely to occur and these will contribute to 
the nonlinear breakdown observed in the experiment (but excluded from the analysis). 
Figure 14 shows how the disturbance varies across the span of the flow. There is 
significant spanwise modulation of the disturbance during the constant-amplitude 
section showing that oblique waves play an important role in the evolution. However, 
the most striking feature is the spiky beakdown that occurs during the temporally 
decaying part of the disturbance, i.e. at the trailing edge. That the resulting breakdown 
is strongly three-dimensional is not surprising, the important result is that it is confined 
to the temporally damped section of the disturbance where the analysis of $4 showed 
that the nonlinear coefficients are greatly strengthened. Figure 15 shows a similar set 
of data but with greater resolution in the spanwise direction. This shows that the 
spikes are more three-dimensional than the constant-amplitude section of the input 
disturbance. It seems that the two-dimensional resonance described in this paper 
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FIGURE 1 1 .  A is the amplitude of the modulated input disturbance in arbitrary units and x is the 
initial relative phase between the two modes (up to an arbitrary constant phase shift). The r.m.s. 
of the measured signal at the same position used in figures 9 and 10 is given by the greyscale: the 
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FIGURE 12. The structure of the disturbance in the y-direction. The vertical axis is the horizontal 
velocity component in m s-' for a set of regularly spaced heights away from the wall. 
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FIGURE 13. A series of instantaneous velocity profiles at times (in the same units as figure 12) of 
(a) 810, (b) 830, (c )  850, ( d )  870, ( e )  890, v) 910, (g) 930 and ( h )  950. In each plot the solid line is a 
measured mean profile with no disturbance and the dashed line is the instantaneous profile. 
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FIGURE 14. A set of hot-wire signals recorded at R = 1980, one displacement thickness from the 
wall and at 2 mm intervals in the range -80 < z < 80 mm, where z = 0 is directly downstream 
from the source. The time is measured in the same units as figure 12, and -u has been plotted 
because at this height the spikes are mainly downward and would be obscured in a plot of +u. 

causes an initial growth in the disturbance near the decaying part of the input and 
this stimulates a vigorous three-dimensional nonlinear interaction. 

A further test can be applied to the apparent relationship between the experimental 
results and the theory described in $82-5. The phase dependent breakdown observed in 
the experiment should disappear when the frequency of the carrier wave is sufficiently 
detuned from the resonance condition. A good indicator of resonant behaviour is 
the phase-dependence shown in figures 10 and 11, but account must also be taken of 
the spanwise variations. The following measure of resonant behaviour has been used. 
Take a spanwise traverse across the plate, e.g. figure 14, and take the total standard 
deviation, 00, of the measured disturbance from the mean undisturbed flow. Then 
repeat the traverse but with the input disturbance phase shifted by n relative to the 
modulating envelope (in practice, multiply the input by minus one) and calculate the 
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FIGURE 15. Same as figure 14 but with records taken at 0.625 mm intervals in the range 
0 < z < 50 mm. 

new standard deviation, 0,. Let r, = OO/O,; if r,  = 1 then the disturbance evolution is 
independent of phase and the dynamics are either linear or a nonresonant nonlinear 
interaction. On the other hand, if r ,  # 1 then phase-dependent resonant nonlinear 
behaviour is being observed. The ratio r ,  is calculated for a range of amplitudes and 
frequencies. 

Figure 16 shows the variation of r,  with amplitude and frequency at three different 
values of R. There is a well-defined resonant frequency in each case. The strength of 
the resonance decreases with decreasing R and it can be seen from figure 7 that there 
is local maximum in the strength of the nonlinear coefficient for modulated waves 
near R = 2000. However, more experimental results need to be taken before it can 
be determined whether or not there is a true correlation between the strength of the 
resonance observed in the experiment and the strength of the nonlinear coefficients in 
the model. A comparison between the experimentally determined resonant frequencies 
and the predicted resonant frequencies is shown in figure 17. Both the 0s calculations 
and triple-deck calculations are in excellent agreement with the experiment. 

7. Conclusions 
A new resonance has been found for two-dimensional waves in the Blasius boundary 

layer where the frequency and wavenumber of one wave are exactly twice those of 
the other wave. The lower-frequency member of the pair lies near the most unstable 
frequency for a given Reynolds number and the higher-frequency wave is on one of the 
higher-order damped branches of the dispersion relationship. Although the resonance 
was discovered using 0s theory, it can also be found on the lower-branch asymptotic 
theory and so has a triple-deck structure. At large enough R the resonant modes are 
w = 2.85R-'I2, CI = (1.14 - 0.149i)R-'14 and w = 5.70R-'12, a = (2.28 + 0.865i)R-1/4. 

Although the resonance has not been found for nearly neutral waves, a weakly 
nonlinear approach has been taken and a set of nonlinear resonant amplitude equa- 
tions have been derived. Only the leading-order nonlinear terms have been calculated 
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FIGURE 16. Resonant response r ,  (defined in text) as a function of the amplitude A (in arbitrary 
units) of the disturbance and the frequency of the disturbance at (a) R = 1980, ( b )  R = 1840 and 
(c) R = 1690. 
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FIGURE 17. Solid line is the 0s neutral curve, dashed line is the lower resonant frequency calculated 
using 0s theory and the dot-dashed line is the resonant frequency calculated using the triple-deck 
dispersion relationship in Hultgren (1987). The crosses are the experimental resonant frequencies 
taken from the maxima in figure 16 and the error bars indicate the width of the resonant peaks in 
figure 16. 

and the resulting truncated equations cannot be justified rigorously because of the 
finite growth rates. In addition, the effects of boundary layer growth have been 
neglected. Nonetheless, they capture certain important features of the early stages of 
the nonlinear behaviour and give some clues about the onset of transition. 
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Amplitude modulation of the waves has been modelled by allowing the frequency 
used in the spatial analysis to become complex. A wave whose amplitude is changing 
exponentially in time over enough cycles will evolve like a complex frequency for a 
finite period of time. The nonlinear coefficients in the amplitude equation only depend 
implicity on o and so, since the dispersion relationship is analytic nearly everywhere, 
adding a small complex part to the frequency would not be expected to have any 
significant effect on the nonlinear coefficients. However, for oi = -O.lo,, one of 
the resonant modes passes close to a branch point in the dispersion relation and 
here substantial increases in the magnitude of the nonlinear coefficients can occur. 
This suggests that if a disturbance is introduced with a sufficiently strong decaying 
section then the decaying part may provoke a much stronger nonlinear interaction 
than any unmodulated sections or growing sections of the disturbance. The results of 
wind tunnel experiments have been presented that show that for a disturbance with 
a growing section, an unmodulated section and a decaying section, it is the decaying 
section that shows the first and strongest nonlinear behaviour. 

Analytic and numerical solutions of the amplitude equations have been obtained 
including steady solutions, Hopf bifurcations to periodic solutions, period-doubling 
cascades to chaos and homoclinic orbits. A feature of these equations (and 2:l 
resonant equations in general) is that the evolution of the equations can depend on 
the initial phase relationship between the two resonant modes. In particular, two 
modes with fixed initial amplitude may either diverge to infinity or converge to a 
steady solution depending on their initial phase relationship. Wind tunnel experiments 
have demonstrated that whether breakdown occurs or not does depend on the initial 
relative phase in the same qualitative way as the model. This phase dependence is 
also a feature of Craik resonant triads, but resonant triads can be found for any 
frequency of two-dimensional wave, whereas the resonance described in this paper 
exists for only one frequency at any given Reynolds number. Experiments have been 
carried out to find out at what frequencies this resonant behaviour can be observed. 
The experiments show that the resonance is confined to a narrow frequency band and 
this frequency agrees very well with the resonant frequency predicted by the theory. 

Thus the three predictions made by the theory, namely (i) a certain resonant 
frequency exists, (ii) the nonlinear behaviour depends on the relative phase of the 
modes and (iii) the nonlinear behaviour can be enhanced by decaying sections in 
the input disturbance, have all been confirmed by experimental measurements in a 
wind tunnel. This agreement may be taken as a retrospective justification for the 
assumptions made in the derivation of the amplitude equations. 

The discovery of a particular dangerous frequency with a dangerous type of 
modulation, that promotes the nonlinear breakdown of a disturbance, has important 
implications for transition prediction on aerofoils. 

This work was supported by the Engineering and Physical Sciences Research 
Council of the UK under its Applied Nonlinear Mathematics Initiative. 

Appendix A 
The derivation of the amplitude equations is presented in this Appendix. The 

disturbance equations (3.5)-(3.7) are substituted into the continuity and Navier- 
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Stokes equations: 

au 

au au 
- + u  at 

($ + €A) u + -& = 0, 

( aaX -++- sax) + “ay = - (& + +) P 

u + $) , (A3) 

where (3.8) has been used for the spatial derivatives. Where a, appears in E it is 
replaced by a(’) + iE and where 201, appears in E2 it is replaced by a(2) - A E  - ie/y 
using (3.1) and (3.2). Terms of O(c) are then gathered together as are terms of O(e2). 
The resulting sets of equations are in u, u and p ;  further manipulation eliminates u 
and p to give equations in u only. 

At O(E)  the coefficient of E is 

Ll(U1) = 0 (A 4) 
where L1 is the 0 s  operator defined as the left-hand-side of (2.3) with a = a(’) and o 
is the resonant frequency. The coefficient of E 2  is 

LZ(U2) = 0 (A 5 )  

where L2 is the 0 s  operator with wavenumber a(2) and o is twice the resonant 
frequency. At this order in E, the modes are uncoupled and (A 4) and (A 5 )  simply 
define the linear eigenfunctions of the resonant modes. 

At 0(c2)  the coefficient of E is 

LI(U21) = ( ’ 41  - A d f l  + 4 4 2 g 1  (A 6 )  

where the dot represents differentiation with respect to X, the star denotes the 
complex conjugate and 

where for notational convenience a1 = a(’) and a2 = a(2). The coefficient of E2 is 

Lz(v22) = - ( [y- ’  - i d 1 4  + k2) f 2  + Atgs (A 9) 

where 
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The condition that the inhomogeneous equation (A 6) should have nontrivial solu- 
tions is that its right-hand side should be orthogonal to the solutions of the adjoint 
homogeneous problem with homogeneous boundary conditions, see Ince ( 1956, $9.34). 
The adjoint of (2.3) is 

(A 12) ( a ~  - O)(IQ’’ - a2y)  + 2 a ~ ’ y ’  + R(tp”’‘ - 2t12y” + a4y)  = 0, 

where w is the solution of the adjoint problem satisfying the boundary conditions 
y = tp’ = 0 at y = 0 and as y + co. The eigenvalues of (A 12) are the same as the 
eigenvalues of (2.3). Thus the solvability condition for (A 6) is 

i 

where w1 is the eigenfunction of (A 12) when ct = ctl. A similar requirement applies 
to (A9) and leads to the solvability condition 

where 1472 is the eigenfunction of (A 12) when tl = m 2 .  Re-writing (A 13) and (A 14) 
leads to the complex amplitude equations (3.9)-(3.10) where 

Appendix B 
This Appendix contains the results of numerical integrations of the resonant-mode 

equations (5.14)-(5.16) combined with the analytical results obtained in $5. I t  is 
convenient to study (@, 6) parameter planes for different constant values of y .  

Figure 18 shows the (@,a) parameter plane for y = 0.3. The region in between 
the two lines s in (a) has two fixed points and outside this region there are no fixed 
points and all nontrivial solutions are unbounded. For most of the region between 
the saddle-node bifurcations there is one stable fixed point and one unstable fixed 
point. However, in moving across the line h it is found that lo = i l l 2  and I 1  > 0 and so 
the stable fixed point loses stability via a Hopf bifurcation. Numerical solutions near 
these parameter values confirm that a stable limit cycle exists immediately to the right 
of h. As @ is increased with 6 = -3.5, say, the amplitude of the limit cycle grows until 
it approaches the unstable fixed point and becomes homoclinic near the dashed line. 
A further increase in @ leads to unbounded solutions. The Hopf bifurcation and locus 
of homoclinic orbits originate from the Takens-Bogdanov point marked by the ‘+’. 
At more negative values of 6, the limit cycle undergoes a period-doubling bifuraction 
at pz  before becoming homoclinic. In fact, within the very narrow region of parameter 
space between the dashed line and p2, a whole period-doubling cascade to chaotic 
solutions can be found. This narrow region appears to persist for large negative 6 
(and this might be an interesting limit to study), but must necessarily terminate before 
reaching the Takens-Bogdanov point where the dynamics are two-dimensional and 
so cannot support chaos. 
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FIGURE 18. Parameter-space maps for y = 0.3. Lines marked s correspond to points where 
a saddle-node bifurcation occurs and were calculated using (5.27). (b)  An enlargement of the 
region enclosed within the dotted box shown in (a).  The '+' sign indicates the location of the 
Takens-Bogdanov point calculated using (5.33) and the line marked h is where a Hopf bifurcation 
was detected. The dashed line shows where the periodic orbit created at h is destroyed by a 
homoclinic orbit. The solid line p 2  shows where the periodic orbit undergoes a period-doubling 
bifurcation before becoming homoclinic. 

As y is reduced the lines s are qualitatively unchanged, but the Takens-Bogdanov 
point moves to lower 6, period-doublings are no longer observed at moderate 6 
and the gap between h and s gets much thinner. When y + 1/8 from above the 
Takens-Bogdanov point has 6 + -a and @ + K from (5.34) and (5.35). For y < 1/8 
the stable fixed point created in the saddle-node bifurcations is always stable: no 
secondary bifurcations have been found. 

For larger values of y the line h moves left across the diagram and the region 
where chaotic solutions can be found gets larger. Figure 19 shows the (O,b)-plane 
at y = 0.7. The chaotic regions are now much broader than before and several 
further period-doubling bifurcations can be resolved. In ( b )  two lines of period-8 
bifurcations cross over, but each line corresponds to bifurcations of two co-existing 
period-4 solutions so there is no degeneracy. These sequences of period-doubling 
bifurcations, reverse period-doubling bifurcations and multiple co-existing periodic 
states near a homoclinic orbit are characteristic of the Silnikov behaviour described 
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FIGURE 19. Parameter plane at y = 0.7: (b) and (c) are enlargements of the dotted boxes shown in 
(a) .  The meanings of s, h, p2, the dashed lines and the '+' are the same as in figure 18. The solid 
lines marked p4 and p8 are further period-doubling bifurcations giving periods of four and eight 
times that of the original limit cycle. Plots ( b )  and (c) both show sequences of period-doubling 
bifurcations to chaos and also reverse period-doubling bifurcations back down to lower-period limit 
cycles. 

in Glendinning & Sparrow (1984) and found in experiments by Healey et al. (1991). 
In (b) the dashed line, which separates bounded from unbounded solutions, has a 
complicated shape and in (c) it has a closed loop inside the region that otherwise has 
bounded solutions. 

Figure 20 shows a bifurcation diagram obtained by taking y = 0.7 and 6 = -3.3. 
As @ is increased, the limit cycle that originated from the Hopf bifurcation period- 
doubles to a period-2 orbit at @ = 1.2181, to a period-4 orbit at @ = 1.2561 and to a 
period-8 orbit at @ = 1.2650. There is a chaotic band (with periodic windows) until 
@ = 1.2865 where there is a reverse period-doubling bifurcation that turns a period-8 
orbit into a period-4 orbit. This period-4 orbit is then destroyed by a periodic saddle- 
node bifurcation at @ = 1.2869. A second period-4 orbit is created at a periodic 
saddle-node bifurcation at @ = 1.2862, and there is hysteresis between these two stable 
solutions as @ is increased and decreased. This second period-4 orbit bifurcates to a 
period-8 orbit at @ = 1.2865 (which happens to be where the reverse period-doubling 
bifurcation occurs on the other solution, this explains the crossing of the p8 lines 
in figure 19b). A second band of chaotic solutions then follows shortly afterwards 
until at @ = 1.2893 the chaotic solution diverges to infinity. By using suitable initial 



Resonant boundary layer wave modulation: theory and experiment 26 1 

3.2 

3.0 

Z 

2.8 

2.6 L 

1.20 1.22 I .24 1.26 1.28 1.30 
@ 

FIGURE 20. Bifurcation diagram for y = 0.7 and 6 = -3.3. Equations (5.14)-(5.16) were integrated 
and the z-coordinate of the Poincare section defined by the plane x = -y has been plotted as a 
function of @. 

conditions a third chaotic band can be found starting at Q, = 1.2984 and a reverse 
period-doubling bifurcation producing a period-4 orbit occurs at Q, = 1.3003. This 
period4 orbit reverse period-doubles at Q, = 1.3018 and the resulting period-2 orbit is 
destroyed by a periodic saddle-node bifurcation at @ = 1.3039; no bounded solutions 
have been found for @ > 1.3039 at this value of 6. 
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